Skip to content
Support Vector Machines
  • Home
  • About
    • About the Book
    • About the Authors
    • Table of Contents
  • Order Information
    • Chinese Edition
    • Japanese Edition
  • Materials
    • Online References
    • Software
    • Learning Theory
    • Bioinformatics

Contents Overview

See detailed contents list ยป

  1. The Learning Methodology
  2. Linear Learning Machines
  3. Kernel-Induced Feature Spaces
  4. Generalisation Theory
  5. Optimisation Theory
  6. Support Vector Machines
  7. Implementation Techniques
  8. Applications of Support Vector Machines
  • Pseudocode for the SMO Algorithm
  • Background Mathematics
  • References
  • Index
© 2025 Support Vector Machines - Theme by Puro